Stochastic Privacy

نویسندگان

  • Adish Singla
  • Eric Horvitz
  • Ece Kamar
  • Ryen W. White
چکیده

Online services such as web search and e-commerce applications typically rely on the collection of data about users, including details of their activities on the web. Such personal data is used to maximize revenues via targeting of advertisements and longer engagements of users, and to enhance the quality of service via personalization of content. To date, service providers have largely followed the approach of either requiring or requesting consent for collecting user data. Users may be willing to share private information in return for incentives, enhanced services, or assurances about the nature and extent of the logged data. We introduce stochastic privacy, an approach to privacy centering on the simple concept of providing people with a guarantee that the probability that their personal data will be shared does not exceed a given bound. Such a probability, which we refer to as the privacy risk, can be given by users as a preference or communicated as a policy by a service provider. Service providers can work to personalize and to optimize revenues in accordance with preferences about privacy risk. We present procedures, proofs, and an overall system for maximizing the quality of services, while respecting bounds on privacy risk. We demonstrate the methodology with a case study and evaluation of the procedures applied to web search personalization. We show how we can achieve near-optimal utility of accessing information with provable guarantees on the probability of sharing data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valuating Privacy with Option Pricing Theory

One of the key challenges of the information society is responsible handling of personal data. An often-cited reason why people fail to make rational decisions regarding their own informational privacy is the high uncertainty about future consequences of information disclosures today. This paper builds an analogy to financial options and draws on principles of option pricing to account for this...

متن کامل

Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo

We consider the problem of Bayesian learning on sensitive datasets and present two simple but somewhat surprising results that connect Bayesian learning to “differential privacy”, a cryptographic approach to protect individual-level privacy while permiting database-level utility. Specifically, we show that that under standard assumptions, getting one single sample from a posterior distribution ...

متن کامل

On Connecting Stochastic Gradient MCMC and Differential Privacy

Significant success has been realized recently on applying machine learning to real-world applications. There have also been corresponding concerns on the privacy of training data, which relates to data security and confidentiality issues. Differential privacy provides a principled and rigorous privacy guarantee on machine learning models. While it is common to design a model satisfying a requi...

متن کامل

Gradual Release of Sensitive Data under Differential Privacy

We introduce the problem of releasing private data under differential privacy when the privacy level is subject to change over time. Existing work assumes that privacy level is determined by the system designer as a fixed value before private data is released. For certain applications, however, users may wish to relax the privacy level for subsequent releases of the same data after either a re-...

متن کامل

Corrupt Bandits for Preserving Local Privacy

We study a variant of the stochastic multi-armed bandit (MAB) problem in which the rewards are corrupted. In this framework, motivated by privacy preservation in online recommender systems, the goal is to maximize the sum of the (unobserved) rewards, based on the observation of transformation of these rewards through a stochastic corruption process with known parameters. We provide a lower boun...

متن کامل

Two Stage Prediction Process with Gradient Descent Methods Aligning with the Data Privacy Preservation

Privacy preservation emphasize on authorization of data, which signifies that data should be accessed only by authorized users. Ensuring the privacy of data is considered as one of the challenging task in data management. The generalization of data with varying concept hierarchies seems to be interesting solution. This paper proposes two stage prediction processes on privacy preserved data. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014